技術資料
變頻電機采用“專用變頻感應電動機+變頻器”的交流調速方式,使機械自動化程度和生產效率大為提高。設備小型化、增加舒適性,目前正取代傳統的機械調速和直流調速方案。變頻電機試驗一般需要采用變頻器供電,由于變頻器輸出頻率具有較寬的變化范圍,且輸出的PWM波含有豐富的諧波,傳統的互感器及功率計已經不能滿足試驗的測量需要,應該采用變頻功率分析儀及變頻功率變送器等。
變頻電機絕緣損壞的原因,變頻電機的特殊設計及應用
變頻電機絕緣損壞的三種原因
1、局部放電是造成變頻電機絕緣過早破壞的主要原因
變頻電源系統工作時所產生的脈沖高頻電壓使電機機發生電暈,引起局部放電、介質發熱、導致有機高分廣絕緣材料裂解,進而導致變頻電機絕緣損壞。
具體來講,變頻調速系統是由變頻器、電纜和電機組成的。變頻器的核心控制部件有BJT(雙極晶體管)、IGBT(絕緣柵)等多種類型,其中IGBT具有驅動簡單、易于保護和高速開關等優點。IGBT的高開關速度建立在快導通和快關斷的基礎上,最高可達30一4okHz,正常工作情況下為20kHz。變頻器的輸出波形是具有陡上升沿和陡下降沿(0.1一0.51AS)的脈沖波,正是由于這種脈沖電壓不同于工頻正弦電壓,從而對變頻電機絕緣的工作環境造成了一系列的影響。
當變頻器將工頻正弦波轉化成脈沖波以后,該列脈沖波從變頻器通過電纜傳到電機的接線端,由于電纜與電機之間的阻抗不匹配將產生反射波。反射波反饋又產生二次反射,二次反射波與原始脈沖電壓波疊加,當疊加的脈沖電壓傳輸到電機時,就會產生一個尖峰電壓。尖峰電壓的大小取決于電纜的長度和脈沖電壓的上升沿時間。通常電纜長度夕加時,電線兩端都產生過電壓,電機端的過電壓幅值隨電纜長度增加而增加。
當變傾電機的絕緣線圈中通過脈沖電流時,短上升沿時間的脈沖波引起電壓在線圈中的分布不均。在模擬電動機定子繞組上進行了電壓波形的測量,表明在電動機定子繞組的首端幾匝上承擔了約80%過電壓幅值,這樣繞組首匝處承受的匝間電壓超過工頻交流電壓條件下平均匝間電壓的10倍以,雖然仍遠低于絕緣的擊穿電壓(變頻導線可耐受工頻電壓13000V),但是已經超過了局部放電起始電壓。可見局部放電是造成變頻電機絕緣過早破壞的主要原因,而介質損耗發熱、空間電荷、電磁激振以及振動等多種因素的存在加速了材料的老化過程。
2、電機本身絕緣設計原因
工頻正弦電機的絕緣設計理論不能完全適用于交流變頻調速電機。因此在設計交流變頻電機絕緣結構時,變頻電機的絕緣性能不僅要能滿足傳統意義上的抗熱老化、抗電老化要求,還要滿足耐高頻脈沖、耐局部放電的要求。
3、頻繁起停影響絕緣壽命
當電機工作于頻繁的起動、制動狀態時,電機絕緣經常處于循環交變電磁應力作用中。起動、制動時間越短、越頻繁,受到的沖擊力越大,絕緣被擊穿的機率就越高。
變頻電機絕緣損壞的原因,變頻電機的特殊設計及應用
變頻電機中的特殊設計
電磁設計
對普通異步電動機來說,在設計時主要考慮的性能參數是過載能力、啟動性能、效率和功率因數。而變頻電動機(variable-frequency Motor),由于臨界轉差率反比于電源頻率,可以在臨界轉差率接近1時直接啟動,因此,過載能力和啟動性能不在需要過多考慮,而要解決的關鍵問題是如何改善電動機對非正弦波電源的適應能力。方式一般如下:
(1) 盡可能的減小定子和轉子電阻。減小定子電阻即可降低基波銅耗,以彌補高次諧波引起的銅耗。
(2)為抑制電流中的高次諧波,需適當增加電動機的電感。但轉子槽漏抗較大其集膚效應也大,高次諧波銅耗也增大。因此,電動機漏抗的大小要兼顧到整個調速范圍內阻抗匹配的合理性。
(3)變頻電動機的主磁路一般設計成不飽和狀態,一是考慮高次諧波會加深磁路飽和,二是考慮在低頻時,為了提高輸出轉矩而適當提高變頻器的輸出電壓。
結構設計
在結構設計時,主要也是考慮非正弦電源特性對變頻電機的絕緣結構、振動、噪聲冷卻方式等方面的影響,一般注意以下問題:
(1)絕緣等級,一般為F級或更高,加強對地絕緣和線匝絕緣強度,特別要考慮絕緣耐沖擊電壓的能力。
(2)對電機的振動、噪聲問題,要充分考慮電動機構件及整體的剛性,盡力提高其固有頻率,以避開與各次力波產生共振現象。
(3)冷卻方式:一般采用強迫通風冷卻,即主電機散熱風扇采用獨立的電機驅動。
(4)防止軸電流措施,對容量超過160KW電動機應采用軸承絕緣措施。主要是易產生磁路不對稱,也會產生軸電流,當其他高頻分量所產生的電流結合一起作用時,軸電流將大為增加,從而導致軸承損壞,所以一般要采取絕緣措施。
(5)對恒功率變頻電動機,當轉速超過3000r/min時,應采用耐高溫的特殊潤滑脂,以補償軸承的溫度升高。